この記事の内容は、図形 問題 難しいを明確にします。 図形 問題 難しいを探している場合は、Universities Caribbeanこの【難問】大人でも解けない小学生の図形問題記事で図形 問題 難しいについて学びましょう。
目次
【難問】大人でも解けない小学生の図形問題の図形 問題 難しいの関連ビデオを要約する
このWebサイトUniversitiesCaribbeanでは、図形 問題 難しい以外の他の情報を追加して、より有用なデータを自分で提供できます。 WebサイトUniversities Caribbeanで、私たちはあなたのために毎日毎日常に新しいニュースを更新します、 最も詳細な知識をあなたにもたらしたいと思っています。 ユーザーが最も正確な方法でインターネット上の情報を更新することができます。
いくつかの説明はトピックに関連しています図形 問題 難しい
数学の図形問題の中ではかなり難しい部類の問題です。 この質問を書いた人はすごいと思いました。 ■STARDY徹底基礎講座の詳細はこちら ■最強学習アプリ「リング」のDLはこちら ↓ iOS版 Android版 ■STARDY公式グッズの購入はこちら ■LINE公式「頭脳戦革命」はこちら東京大学医学部在学中、司法試験一発合格。 ずーっと頭脳王です。 初の著書『簡単な勉強法』()は世界中のタイ語や繁体字に翻訳され、シリーズ累計部数は12万部を突破。 2020年3月14日描き下ろしイラスト版公開予定 ■SNS 河野ゲント:ルーク(編集者等):Stardy 公式:コラボや企画に関するお問い合わせは、公式TwitterのDMまでお願いします。
一部の写真は図形 問題 難しいの内容に関連しています

学習している【難問】大人でも解けない小学生の図形問題に関する情報を読むことに加えて、UniversitiesCaribbeanが毎日下の公開している他の記事を見つけることができます。
図形 問題 難しいに関連するいくつかの提案
#難問大人でも解けない小学生の図形問題。
河野玄斗,こうのげんと,げんげん,東大医学部,頭脳王,神授業,Stardy,数学,受験,東大医学部の神脳,神脳。
【難問】大人でも解けない小学生の図形問題。
図形 問題 難しい。
図形 問題 難しいの知識により、UniversitiesCaribbeanが更新されたことが、より多くの情報と新しい知識を手に入れるのに役立つことを願っています。。 universitiescaribbean.comの図形 問題 難しいの内容を見てくれてありがとう。
AP=a PB=b AR=c RC=d とおくと、a^2 + b^2 = c^2 + d^2 の条件下で正方形の面積は(ad+bc)(ab+cd) / 2(ac+bd)
円に内接する四角形が出来る事に気が付き、方べき、トレミーの定理で解きました
こういう背景でつながるのかー、と納得しました
チェバの定理って使えないのかな?
話がある早すぎる、小学生を相手に一つ一つ式を書きながら説明お願いします。
高校数学でやろうとしたらややこしい係数の二次方程式解く羽目になった。
Kouno Sensei's solution is undoubtedly brilliant. However, if it is too clever to think about, coordinate geometry helps to solve the problem:
Let s cm be the length of a square side. Align the diagram with the cm-scaled Cartesian plane by the mapping scheme:
P → (0,s); Q → (0,0); R → (s,0) & S → (s,s).
As Q is the midpoint of BC,
B is at (-u,v) and C is at (u,-v)
for some u>0 and v>0.
Let A be at (m,n). As |AR|:|RC| = 9:2,
s = [2(m)+9(u)]/(9+2) & 0 = [2(n)+9(-v)]/(9+2)
m = (11s-9u)/2 ···(C1) & n = 9v/2 ···(C2)
Likewise, as |AP|:|PB| = 7:6,
0 = [6(m)+7(-u)]/(7+6) & s = [6(n)+7(v)]/(7+6)
m = 7u/6 ···(C3) & n = (13s-7v)/6 ···(C4)
By (C1) and (C3),
(11s-9u)/2 = 7u/6
u = 33s/34 ···(C5)
By (C2) and (C4),
9v/2 = (13s-7v)/6
v = 13s/34 ···(C6)
As |RC| = 2,
(s-u)² + (0+v)² = 2²
(s – 33s/34)² + (13s/34)² = 2² (by (C5) and (C6))
s² = 27.2
Hence the area of square PQRS is 27.2 cm².
もう少しゆっくり話していただけるとありがたいです
△PBQと△QCRを辺BQと辺QCでくっつけて、それと多角形APSR(△APRから△PSRをくりぬいた形)を辺PQRと辺PSRでくっつけると、さらに簡単に解けますかね…。
解くのに8時間かかりましたが😢
オリンピックはむずいぞ
算数でやるのをあきらめて余弦定理を使ったんですけど、自分の解きかたで解いた人がコメント欄に見当たらなかったので一応残しておきます。ちょっと言葉尻を捕らえるようですが、「ルートは使っていません。」でもまあルール違反かな…
正方形の一辺の長さをx(cm)とおくと、求める面積はx²である。
直線AQ上に、AQ=QDとなるような、Aと異なる点Dをおくと、BQ=QCより、四角形ABDCは平行四辺形である。
さらに、直線BDと直線RQの交点をTとすると、BT=2cmであり、TQ=PQ=RQ、QR⊥PQより、△PTRは直角二等辺三角形である。また、△PTRの面積はx²であり、求める正方形の面積に等しい。
PT=PR=y(cm)とすると、y²は△PTRの2つ分の面積に相当するから、y²=2x² …… (1)
ここで、∠PBTをθとする。
△PBTについて、余弦定理より、
y² = 2² + 6² – 2・2・6cosθ = 40 – 24cosθ …… (2)
四角形ABDCは平行四辺形であるから、∠PAR = 180° – ∠PBT = 180° – θ
よって、cos∠PAR = cos(180° – θ) = -cosθ
△PARについて、余弦定理より、
y² = 7² + 9² + 2・7・9cosθ = 130 + 126cosθ …… (3)
(3) – (2) より、150cosθ + 90 = 0
cosθ = -0.6
(2)に代入して、y² = 54.4
(1)より、2x²=54.4 であるから、
x²=27.2
正方形PQRSの面積は27.2cm²である。
時々見られる暗算が早すぎて鳥肌あ
やってみたけど解けなかった。同角の面積比を忘れてて、証明するまでやりたくなかったからだけど、この公式って小学生で教えたっけ?なんか算数じゃなくて高校数学ぐらいに感じる
最もゆっくりおはなしくださいませんか、お願いします。
三角形QRCを点Qで回転させて台形BARR‘を作り出すと三平方で解けました。
はは~ ほ~ しかでえへんわ笑。すごい。
この問題マジやべ〜怖い
解説めっちゃ真面目に聞いてたけど途中でなんも分からんくなった
教えるには早口w
小学生は三角関数習ってないのにどうやって共通の角を持つ三角形は面積比と辺の積の比が同じって納得するんだろう…
「小学生でも知ってれば解ける」ってタイトルにしてくれないかね
毎回思ったけど、小学生だからルートを使っては行けない、、、算数オリンピック解ける小学生ってワンチャン微積分も学んだ気がする
90℃ひっくり返すってとこでもう無理
残念ながら後半の30㎠が気付けなかった…。また算数オリンピックの良問をお願いします。